Publication:
Application of principal component analysis in the design of substrates for surface enhanced Raman scattering (SERS) to detect proteins present in buffer solution
Application of principal component analysis in the design of substrates for surface enhanced Raman scattering (SERS) to detect proteins present in buffer solution
Authors
Martínez Julca, Milton A.
Embargoed Until
Advisor
Resto Irizarry, Pedro J.
College
College of Engineering
Department
Other
Degree Level
M.S.
Publisher
Date
2019-12-09
Abstract
Therapeutic cells are a key component in the future of medicine. Biosensing methods that can monitor cell quality attributes in a rapid, real-time manner are required to scale-up the manufacturing of high-quality therapeutic cells. In the present work, ATR-FTIR and Raman spectroscopy are used to discriminate protein in solutions. Results show the ability to detect proteins as a function of their covalent bonds, but with low signal/noise ratios. SERS was implemented using Au thin films deposited on Si, Polydimethylsiloxane (PDMS), micro-PDMS and polycarbonate substrates to increase signal/noise ratios. Au thin films were made using Physical Vapor Deposition (PVD). These were analyzed using AFM and Raman Spectroscopy. Au thin films having a thickness of 10 nm were obtained and showed a suitable roughness (around 2.6-51.18nm). Spectral analysis was combined with multivariate analysis using Principal Components Analysis (PCA) to differentiate between substrates as a function of their chemical composition.
Células terapéuticas son un componente clave en el futuro de la medicina. Métodos de biosensores que pueden monitorear atributos cualitativos en una manera rápida, tiempo real son requeridos para la manufactura a alta escala de células terapéuticas de alta calidad. En el presente trabajo, ATR-FTIR y espectroscopia Raman son usadas para discriminar proteínas en soluciones. Resultados muestran la habilidad para detectar proteínas en función de sus enlaces covalentes, pero con bajas proporciones de señal/ruido. SERS fue implementado usando películas delgadas de oro depositadas en sustratos de Si, Polidimetilsiloxano (PDSM), micro-PDMS, y policarbonato para incrementar las proporciones de señal/ruido. Películas delgadas de oro fueron hechas usando Deposición Física de Vapor (PVD por sus siglas en inglés). Películas delgadas de oro fueron hechas usando Deposición Física de Vapor. Estas fueron analizadas usando AFM y espectroscopia Raman. Películas delgadas de oro teniendo un espesor de 10 nm fueron obtenidas y mostraron una rugosidad adecuada (alrededor 2.6-51.18nm). Análisis espectral fue combinado con análisis multivariable usando Análisis de Componentes Principales (PCA, por sus siglas en inglés) para diferenciar entre sustratos como función de su composición química.
Células terapéuticas son un componente clave en el futuro de la medicina. Métodos de biosensores que pueden monitorear atributos cualitativos en una manera rápida, tiempo real son requeridos para la manufactura a alta escala de células terapéuticas de alta calidad. En el presente trabajo, ATR-FTIR y espectroscopia Raman son usadas para discriminar proteínas en soluciones. Resultados muestran la habilidad para detectar proteínas en función de sus enlaces covalentes, pero con bajas proporciones de señal/ruido. SERS fue implementado usando películas delgadas de oro depositadas en sustratos de Si, Polidimetilsiloxano (PDSM), micro-PDMS, y policarbonato para incrementar las proporciones de señal/ruido. Películas delgadas de oro fueron hechas usando Deposición Física de Vapor (PVD por sus siglas en inglés). Películas delgadas de oro fueron hechas usando Deposición Física de Vapor. Estas fueron analizadas usando AFM y espectroscopia Raman. Películas delgadas de oro teniendo un espesor de 10 nm fueron obtenidas y mostraron una rugosidad adecuada (alrededor 2.6-51.18nm). Análisis espectral fue combinado con análisis multivariable usando Análisis de Componentes Principales (PCA, por sus siglas en inglés) para diferenciar entre sustratos como función de su composición química.
Keywords
Principal Component Analysis, SERS, Au thin films, Raman, Cell Manufacturing
Usage Rights
Persistent URL
Cite
Martínez Julca, M. A. (2019). Application of principal component analysis in the design of substrates for surface enhanced Raman scattering (SERS) to detect proteins present in buffer solution [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/2534